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Tine efftcieni solution of two- and three-dimensional Poisson- and Helmholtz-type equaticns 
on the sphere with multigrid methods is the subject of this work. The strong anisotropic 
behavior of the Laplacian in spherical coordinates poses severe requirements on the relaxation 
procedures, in order to attain a full multigrid effectiveness. The introduction of a nea tech- 
nique, combined relaxation, results in high efftciency. even in cases with varying anisotropy 
direction, where alternating line or plane relaxations would normally be required. The com- 
bination of this new relaxation technique with semi-coarsening strategies is also studied. Even 
for moderate grid sizes, the multigrid solvers developed are shown to be competitive with Tao- 
dimensional, direct fast solvers. in cases where the latter can be applied. The op!imal com- 
putational complexity of the mu!rigrid methods, their broad applicability (in contrast to fast 
direct solvers), and their high effkiency, also in three spatial dimensions, make these methods 
very interesting for applications. 8% 1991 Academc Prsss. Ioc. 

The solution of elliptic equations in spherical geometries is of interest for many 
applications, for example, in astro- and geophysics. We describe in this work the 
development of efficient multigrid solvers for two- and three-dimensional Poisson- 
and Helmholtz-type equations on the sphere. The crucial problems one has to deal 
with when solving these equations are the singularities and the strong anisotropy 
of the Laplacian in spherical coordinates. These problems lead to the requiremem 
for special multigrid components, without which one would be far away from 
reaching the full efficiency of the method. 

The treatment of singularities already begins with the discretization, since the 
Laptacian in spherical coordinates is not formally defined there. Through the use of 
finite volume techniques, a discrete equation is naturally derived at these points. Ln 
addition to that, the obtained second-order discretization is conservative an 
be symmetrized easily. This property also allows for the analytic derivation of 
discrete compatibility conditions for the Poisson equation in the sphere (with pure 
Neumann boundary conditions) and on the surface of a sphere These conditions 
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(analogous to the continuous ones) must be satisfied in order to ensure that the 
discrete set of equation possesses a solution. 

An essential part of the multigrid method is the process of error-smoothing, since 
(only) a smoothed error can be well approximated on a coarser grid. For isotropic 
problems one can normally achieve a good smoothing by using standard (suitable) 
pointwise relaxation procedures (like Gauss-Seidel, SOR, etc.). It is well known 
that this is no longer true if the problem is anisotropic, for which more 
sophisticated relaxation methods (such as line, or even plane, relaxation for some 
3D problems) are required (e.g., [7, 13, 151). 

The elliptic problems in spherical coordinates treated here are all highly 
anisotropic. Depending on the mesh size relations, the anisotropy even changes its 
direction inside the domain, leading to poor smoothing properties of usual line (or 
plane in 3D) relaxations. Expensive alternating line (plane) relaxations should then 
be used (cf., [7, 131). 

Instead of using these alternating-type relaxation methods, we propose a new 
technique, combined relaxation. In this procedure, the domain is subdivided 
according to a local Fourier analysis, so that in each subdomain the anisotropy 
direction remains unchanged. The relaxation to be used in each subdomain is then 
chosen according to the local anisotropy direction. In two dimensions, the obtained 
relaxation is as cheap as a usual line relaxation and has very good smoothing 
properties. The same idea is extended to three dimensions and, although with a 
more involved implementation, since it requires plane relaxation, also gives 
significant improvements. Similar ideas about exploiting the local behaviour of the 
equations were proposed in early works by Brandt [6] in the so-called “local 
relaxation sweeps.” There, however, an arbitrary subdivision of the domain was 
suggested (in an adaptive procedure). 

As an alternative in the treatment of anisotropies in three-dimensional problems, 
we investigate the use of semi-coarsening (e.g., [13]), which should be useful in 
order to avoid plane relaxation. We discuss the difficulties of using this technique 
for varying anisotropy, where the anisotropy direction on coarser grids can change, 
even if it does not change on the finest one. As a consequence, the behavior of the 
multigrid method deteriorates. We show then how to combine semi-coarsening and 
line relaxation on fine grids with standard coarsening and plane relaxation on 
coarser grids in order to overcome these problems. With this combination, plane 
relaxation (at least) on the finest grid is avoided and efficiency is improved. 

The performance of the developed multigrid methods can be observed through 
the presented numerical results. In order to get an impression of the efficiency, we 
also made comparative tests with the well-known (based on Buneman’s reduction 
method) direct fast solver of FISHPAK [l], for the 2D Poisson equation on the 
surface of a sphere. Both methods are comparable for medium-sized problems, 
while the better complexity of the multigrid method (with a computational work 
proportional to the number of unknowns) leads to a better performance of this 
method on finer grids. Another point is that, in contrast to the restricted 
applicability of fast direct solvers, the multigrid method can be used in more 
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general situations (e.g., for the Melmholtz-type equations in 14, 51) and, as we 
show in this work, is extendable (maintaining efficiency) to 3D problems in spheri- 
cal coordinates. (No special assumptions are made in the three-dimensional case, 
For the special situation of axisymmetry, when the problem can be reduced to two 
dimensions, an efficient multigrid method has been presented in [i I].) 

Throughout this paper we assume that the reader is familiar with multigrid 
terminology. For those who are not: we refer to [7, 10, 131, where complete 
descriptions of the method and its variants can be found. The paper is divided as 
follows. A description of the discretization used is given in Seciion 1. Section 2 is 
dedicated to problems on the surface of a sphere. The combined relaxation is 
introduced in this section. The three-dimensional problem is treated in Section 3. 
We first analyze the use of standard coarsening techniques and show the necessity 
for using plane relaxation. The extension of combined relaxation to three 
dimensions is described and a number of numerical experiments are presented. 
Semi-coarsening strategies are also discussed. Concluding remarks are given in 
Section 4, 

1. DISCRETIZATION 

We derive in this section a discretization for the Poisson equation on the sphere: 

with Neumann boundary conditions 

au 
-&=g in d8. 

A discretization for the Poisson equation (with periodic boundary conditions) on 
the surface of the sphere will also be obtained. 

We apply the orthogonal transformation 

to map the region 
sphere. See Fig. 1. 

The transformed 

! 

x(r, q3, 0) = r sin f$ cos 8 

@ = y(r, 4, 0) = r sin C# sin 8 
z(r, q5, Oj = r cos f# 

Q* = {(r, 9, e): Odrd 1, o<(h<n, 06 8<27r) onto the anit 

Laplacian is written in spherical coordinates as: 

For the equation on the surface of the sphere, we sei r = 1 and eliminate the first 
term in the expression for the Laplacian (the region Q* becomes two-dimensional). 
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Surface NP 

(l,O,O) 

/I 
Singularity PI 

/ Singdarity 4 

(O,O,O) 4 (0, *, 0) 

FIG. 1. Computational and physical domains. 

SP 

For the full sphere, the following computational grid is defined in Q*, 

Gt = { (ri, tjji, 8,): i = 0, . . . . N,., j = 0, . . . . N,, k = 0, . . . . N,}, (1.2) 

with ri = ih,, dj = jh,, 8,= kh,, and where the mesh sizes are given by h,= l/N,, 
h, = n/N4, and ho = 271/Ng. The quantities N,, N4, and NO are chosen, in order to 
allow usual coarsening strategies, as powers of two or as small prime numbers (3 
or 5) times a power of two. The computational grid on the surface of the sphere is 
obtained through the restriciton r = 1. We remark that to each singularity (where 
the determinant of the Jacobian of the transformation vanishes) there corresponds 
a whole line or plane in the computational domain. Points corresponding to a 
singularity are then naturally identified (see Fig. 1). 

In order to obtain a finite volume discretization, we divide the computational 
domain into control volumes (cells), each of them corresponding to a grid point 
(ri, djj, 0,): 

See Fig. 2. The cell faces are denoted, for example, as: 

_- - -,, .-_ _ -- . ‘. 

R 

‘.. 

FIG. 2. Control volumes and their faces. 
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The faces TTjt l:z.k and r$k+l;Z are defined similarly. (Near the boundary of Q* 
we have half cells, quarter cells, . . . . ) In an analogous way we define the cells in the 
two-dimensional case (on the surface of the sphere). Through the mapping @ we 
obtain the “physical” (on the sphere) grid G,, = @(GX )? cells (Q, j,k = @(L?F; fi))r and 
their faces. This transformation is sketched in 2D in Fig. 2. 

Remark. The smaller cells Q,Tj,O and L2zj,, actually correspond to the same 
physical grid point (due to the periodicity in the B-coordinate). These cells are the~l 
joined to form just one cell around this grid point. 

We now derive the discrete equations at nonsingular points. For the sake of 
simplicity we restrict the description to two dimensions (on the surface of the 
sphere). At a point (d,, 19,) (with I< j < N, - 1 and t d k d N,, see remark above 
for k = N,), we integrate 

Au=V.Vu=f 

over the corresponding control volume. By the divergence theorem, one obtains 

Au= - 
J 

Vu a= j .L 
‘Q,. k as,. i 

with n denoting the outward unity normal vector. Using the inverse of the mapping 
@ and its orthogonality, we have 

Each of the line integrals is then approximated by the midpoint rule and the 
derivatives involved on it by central differences. For example, 

The integration of the right-hand side f is also accomplished through the midpoint 
rule, 

s f=f(4ji, ek) vj.k, 
Q,. P 

where Vi,, = h,hg sin dj approximates the volume of the cell, We obtain all together 
the five-point star, 

where x denotes the sum of the four neighbours. 



318 SAUL0 R. M. BARROS 

We come now to the treatment of the singularities. To each of them correspond 
more than one point on the computational domain, which must be identified. 
The integration of the equation is now performed over all corresponding cells at 
once. At the north pole P, (where 4 =0) we obtain (with the definition 
&I= @‘(U20 QtF,k))T 

where we again use the midpoint rule in the line integrals and central differences to 
approximate derivatives. The periodicity in the e-coordinate was also used to join 
the two quarter cells Sz,,, and Q,, into a half cell like the others. By discretizing 
the right-hand side as 

we obtain 

kz, z sin d1,2(441, ok) - 4PN)) =f(PNb !f sin d1:2 =.WN) rrN. (1.6) 

Analogously, at the south pole one obtains 

(1.7) 

There are several important remarks to be made: 

(a) Integrals on faces common to two cells are approximated in the same 
way by the discretization in each of them. This is important for obtaining a conser- 
vative discretization. Another consequence is that the final discretization on the 
surface of the sphere is symmetric. 

(b) At nonsingular grid points, the discretization is virtually identical to a 
central difference discretization (up to a multiplicative factor, which depends on the 
grid point being considered). However, central differences cannot be directly 
applied to discretize the equation at singularities. 

(c) The last remark already shows that the discretization is second order at 
nonsingular points. It is easily shown by Taylor’s expansions that second order is 
also achieved at the poles. 

(d) In order that the Poisson equation has a solution on the surface of the 
sphere, the right-hand side f has to satisfy the compatibility condition js f = 0. The 
solution is then unique just up to a constant. The discrete equation preserves these 
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properties. The symmetry of the discretization is quite useful in deriving the discrete 
compatibility condition that must be fulfilled. Since in each discrete equation the 
sum of the coefftcients equals zero, the constant function belongs to the kernel of 
the discretization matrix. By elimination of one row and one column of this matrix. 
a diagonally dominant and irreducible matrix is obtained and, therefore, the 
constant function spans the kernel of the discretization matrix. This shows that the 
discrete solution is unique up to a constant, when it exists. Tn order for a solution 
to exist, the discrete right-hand side has to be orthogonal (in the Euchdian inner 
product) to the kernel of the adjoint of the discretization matrix. Due to the sym- 
metry of the matrix, the constant function also spans this kernel. The compatibility 
condition then just says that the sum of all right-hand sides have to be zero. This 
means that C Ji,x- Tfj.k = 0, which is a second-order approximation to the continuous 
compatibility condition Jsf = C ln,,, f= 0. 

(ej Normally, the discrete compatibility condition will note be fulfilled, even 
when the continuous condition is. The right-hand side must then be modified in 
order to ensure the existence of a solution to the discrete problem, With Fj .+ = 
{,,fi ‘Vj,k we have the following compatibility condition: (I$ 1) = 0 (which will 
normally be satisfied only up to an 0(/r’) term). By modifying 6: as F’= 
F-((F> I>!(c, 1))~ (with any function v), one will obtain the fulfilment of E 
condition. One has, however, to be careful of the choice of D, in order not to 
the order of accuracy. Concentrating the correction on just one grid po 
example, would iead to inconsistency of the discretization there. Two possible 
choices are to take c’ = 1 or t’j,i = Vi,.i, which would correspond to changes of order 
0(/r’) in .f at each point, keeping the discretization second order. Our choice wiii 
be i~,,~ = Vi,i, equivalent to the addition of a constant to the right-hand side; 

(f) The discretization (1.5)-(1.7) has already been used in 
in finite difference form). The discrete compatibility condition an 
modifying the right-hand side in order to obtain a solution were also discussed 
there. However, the order of consistency of the discretization and the i~~~e~~~s of 
the perturbation of the right-hand side on it were not analyzed in that work. We 
include here the whole derivation of the discretization in order to consider it within 
the framework of finite volumes, which furnish a simple way of treating the 
singularities and of achieving a conservative, symmetric second-order discretization. 
The treatment of compatibility conditions is also trivial in this framework. The 

e techniques are applied in three dimensions; it is merely for convenience that 
we present a detailed description only in two dimensions 

We come now to the three-dimensional discretization on the sphere, which is also 
obtained by finite volume techniques as in the two-dimensional case. A: a non- 
singular point (rir 4j, 0,) we get the seven-point star, 

Ati A,sin+jjrf+ i z 

- 
sin &j 

A, sindji,,z -1 A, sin aji I:2 
.A,rind,rz_ j 2 

=A,j,,rf sin qSih,h,h,, (l.a! 
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where A,= h,h,/h,, A,= h,h,/h,, A,= h,h,/h,, and C denotes the sum of the 
neighbours. One obtains at inner points on the north pole-south pole axis Pi = 
(r;, 4, 0) (with 4 = 0 or 4 = z), 

xhb . h, 
-sin T (rf+ I!2(Wj+ I) - 4P,)j + rf- &u(Pj- I) - u(P,))) 
2hr 

+ A, sin ‘: z (u(ri, 6, 0,) - u(P,)) 
k=l 

=i f(Pi) xrfh,.h, sin?, (1.9) 

where i= h, (if 4 = 0) or i= 71 -h, (if 4 = 71). At the origin P, = (0, 0, 0), we obtain 

q 5 “5’ sin f$j(u(r,, I++~, Ok)-u(P,j) 
k=l j=l 

(1.10) 

where S = sin h,/2/2 + cyj; ’ sin I$~. At nonsingular boundary points one obtains 
p= (l, dji, ek), 

#j+l,2 1 ’ -2 A+ sin A,sincj,((l -h,:2Y+(l +/q/Z)?) ~ 4 1 4 sin dj 
l(i, j.k 

0 

=fi,.i,k sin qbih,h,h,-2h,A,sin d.j(l + h,/2j’gi,j,k 

and at the poles P, = (1, #, 0) (with d=O or +4=x), 

(1.11) 

(1.12) 

where $=h, (if d=O) or $=n-hh( (if i=n). 
In the discretization at boundary points we have already incorporated the 

boundary conditions. An extension of the control volumes to the outside of the 
domain was used to obtain a discrete equation like (1.8). It involves, however, a 
(ghost) point outside the domain. In the usual way of treating Neumann boundary 
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conditions, the outer normal derivatives (in the I-directionj were approximated 
through central differences. At a point P = (1, bi, t?,j the approximation is 

The expression obtained for the ghost point, U( 1 + k,, bj, B,f = ~(1 -h,, (9,, g,<) + 
2/z,. g(P), is then substituted in the equation at the boundary, leading to (1.11 ), 
Discretization (1.12 j is obtained analogously, departing from a discretization like 
(1.9:) 

The final discretization has at every point the order of consistency two. This is 
proved again by using Taylor’s expansions [3]. 

We point out that the final discretization is not symmetric, due to the treatment 
of the boundary conditions. It can, however, be easily symmetrized by multiplying 
each equation at boundary points by (1 - h,./2)‘/(( 1 - !zr/2j’ + (1 -b h,,2 j2 j. The 
new discretization matrix is then symmetric and the considerations about com- 
patibility conditions from the two-dimensional case are still valid. In particular, it 
becomes trivial to obtain the discrete compatibility condition, which is now a 
second-order approximation to the continuous one js2 f - [2n g = 0 (see 133 for a 
proof). 

Once the complete discretization is obtained, one can use an equivalent formula- 
tion of it, such as the finite difference form at nonsingular points (obtained from the 
finite volume discretization through division by the approximated cell volumes). 
This actually has the effect of destroying the symmetry of the discretization, but rhis 
is not important for methods such as multigrid (for some other methods one would 
naturally prefer the symmetric form). In our multigrid solvers we are actually going 
to use an equivalent formulation of the equations, obtained by scaling each 
equation as follows. On the surface of the sphere we multiply 

h, (1.5) by---- h, sin bji’ 
(1.6jand11.7)by 2/r@ 

TI sin h,/2’ 

and in the three-dimensional case we multiply 

(1.8jand(l.ll)byh hh*zins., 
B r / 

(1.10) by&s> 
7 Q 

(1.9) and (1.12) by 
24 

rth, sin h,/2’ 

2. MULTIGRID METHODS ON THE SURFACE OF A SPHERE 

(4.!3\ 

We present in this section a multigrid solver for a model elliptic equation on the 
surface of the sphere, the Poisson equation with periodic boundary conditions. This 
solver can be easily adapted to treat other Poisson-type problems, such as the 
Helmholtz equations treated in Section 3.4. 
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The Poisson equation is discretized according to (l.S)-( 1.7) and (1.13), including 
the perturbation of the right-hand side in order to satisfy the discrete compatibility 
condition (see remark (e) in Section 1). The discrete solution (in agreement with the 
continuous one) is determined only up to a constant. The multigrid scheme is 
constructed as follows: 

(a) Grids and coarsening. The finest grid is defined by (1.2) (restricted to the 
surface of the sphere), while the coarser grids are obtained by successively doubling 
the meshsizes of the finest grid (standard coarsening, e.g., [13]). The coarse grid 
operators are defined in the same way as on the finest grid. 

(b) Transfer operators. Residuals are transfered from finer to coarser grids by 
a (transformed) full-weighting operator (e.g., [7]). At nonsingular grid points it is 
defined by the star (with (@;, 0,) denoting the corresponding fine-grid point at 
which the transfer takes place): 

’ Sifldj-1 
m 

2 sin d.i + I 
sin dj sin tij 

2- sindj-1 4 2 . I sin fj.+r 
sin dj sin dj (2.1) 

djil Sill 
2 4j+l sin 

. sin dj sin fjj _ 

At the poles we need a special definition of this operator. Tt is derived in such a 
way, that the transferred residuals will automatically satisfy the discrete com- 
patibility condition on the coarse grid, once the corresponding condition on the tine 
grid is fulfilled. Denoting by R the residual function on the fine grid, the transferred 
residual at a pole P is defined as 

(2.2) 

where 6 = h, (if 4 = 0) or 6 = 7~ - h, (if 4 = n). N, is the number of grid points on 
the tine grid in the e-direction. This is an average of all residuals surrounding the 
pole. Bilinear interpolation is employed to transfer the corrections from coarser to 
finer grids. 

(c) Relaxation. Having made the choice to use standard coarsening, we need 
to find a relaxation procedure, which should rapidly reduce the high-frequency 
components of the error function (related to a given approximation to the solution) 
in all grid directions. Due to the strong anisotropy of the Laplacian in spherical 
coordinates, especially near the poles where its coefftcients in the e-direction are 
orders of magnitude greater than in the &direction, usual pointwise relaxation 
methods will have poor smoothing properties. Line relaxation methods should be 
used in these circumstances (e.g., [13]). 
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A local mode analysis can provide qualitative and quantitative information about 
given relaxation procedures [7]. Through the smoothing factor ,B(v) one can 
predict the behavior of a multigrid method, which employs \I sweeps of the corre- 
sponding relaxation in each multigrid cycle. One can roughly expect an overa’ni 
reduction of the error after each multigrid cycle by a factor of about p(v)” (for smaI 
values of v). This smoothing analysis (for problems with variable coefficients) is 
performed at all grid points. Actually, the operator is frozen at each point and an 
idealized constant-coefficient problem on an infinite grid is analysed instead. A 
coupling between low and high harmonics (caused by some relaxations. such as 
red-black and zebra-line) is taken into account by the simulation of a multigrid 
cycle, which employs an ideal coarse grid correction operator, which annihilates all 
low frequencies and does not affect high-frequency Fourier components. We refer to 
cl?] for a detailed description of the local analysis. 

Now we present results of a smoothing analysis for some point and line reLaxa- 
tion methods. Other versions of these relaxations (with different ordering of grid 
points) have qualitatively similar properties to the corresponding versions treated 
here. For all versions considered we have for the locat smoothing factor, 

where G,T ‘.’ denotes the interior of G,T. In particular, the poles and the boundaries 
are not considered in the analysis. The global smoothing factor g;(v) is obtained by 
taking the supremum over all local smoothing factors. The values A, and A, 
depend on the grid point (dj, 0,) and on the frequency 8 = (8,. @?i, They take rhe 
following values for: 

poirst red-Muck reiaxation: 

4 4: .cos qb il, . 

Al(@) = 
cos~cos@~+.cos~,+ly-- 

sm- q5 sm 4 
sinEsm8, 

cos~+-I-& 

B-zebra he rdavatian: 

h!b ‘OS ’ sin !!.i Qin Q cos-cosO,+i~ 

A,(O) = 
2 sin I$ 2 ” ’ 

cos~+-&pcos@,~ 

(2.4) 

i2.5) 

A,(O)=A,(O,+7i, 0,j: 
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d-zebra line relaxation: 
2 

41 - cos 0, 

A,(Q)= q; 
sin’ q5 

h, .cosd h, 
.,+cos~(1-cos02)+r- 
sin- 4 

sin - sm 0, 
sin 4 2 (2.6) 

A,(O) = A,(@,, 02 + 7~). 

The value 
4, = hplh (2.7) 

describes the meshsize ratio. Equations (2.3), (2.4), and (2.6) show that red-black 
and d-zebra relaxation give a poor global smoothing. The smoothing factors 
approach unity for points near the poles. On the other hand, it can be seen that 
e-zebra line relaxation smooths very well if q, > 1. In this case we obtain ~(2) < 0.34 
and can expect convergence factors around 0.1 for multigrid cycles employing two 
sweeps of relaxation on each grid level. For smaller values of q1 we get a more com- 
plicated picture, since then there is a change in the anisotropy direction inside the 
domain and none of the relaxations considered have good smoothing factors. 
An alternating line relaxation (with a sweep of line relaxation in one direction 
followed by one in the other direction) would be necessary to provide the required 
smoothing [7, 131. Tables I-IV contain the asymptotic convergence factors for 

TABLE I 

V( 1, 1) Multigrid Convergence Factors 
with Line Relaxations when q, = 2 

Relaxation 

Ne> N@ O-Line &Line 

32, 8 0.020 0.76 
64, 16 0.030 0.93 

128,32 0.040 0.97 
X6,64 0.045 0.98 

TABLE II 

V(1, 1) Multigrid Convergence Factors 
with Line Relaxations when q, = 1 

Relaxation 

Ne, Ne B-Line &Line 

32, 16 0.042 0.76 
64,32 0.054 0.93 

128,64 0.059 0.97 
256,128 0.063 0.98 
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TABLE III 

r’( 1, I) Multigrid Convergence Factors with Ihe 
Relaxations when q1 = 0.5 

Relaxation 

IV@, N, 

16.16 
32.32 
64.64 

1’8. 128 

O-Line 

0.31 
0.36 
0.39 
0.41 

@-Line 

0.63 
0.76 
0.93 
0.97 

TABLE IV 

V(1, i) Multigrid Convergence Factors with L:ne 
Relaxations when q1 = 0.25 

Relaxation 

?I@, N, 

8, 16 
16. 32 
31,64 
64, 128 

O-Line 

0.68 
0.72 
0.75 
0.77 

d-line 

0.34 
0.53 
0.76 
0.93 

Altern. line 

0.025 
0931 
rz.o4?. 
C.05 1 

F<‘:,I: I j-cycles with various relaxations for several situations, Tkey are in agreement 
with the results of the smoothing analysis. 

It was shown in the last section, by a mode analysis and numericai experiments, 
that the single line relaxation methods were not sufficient for very good multigrid 
convergence factors in cases with q1 < 1. There is actually no sudden deterioration 
of the convergence factors when crossing the point y, = 1, but they will gradually 
get worse with smaller values of q,. (However, for q, < 1 it starts to be more effec- 
rive to apply line relaxation in the other direction, in some parts of the domain.) 
In these cases, O-line relaxation smooths well near the poles but can not pro-G&z a 
good smoothing near the equator, where the anisotropy has another direction. 8nly 
with an alternating line relaxation, where &line relaxation accounts for the good 
smoothing ie the region (near the equator) where 84ine relaxation does not per- 
form well and vice versa, are typically good multigrid convergence factors achieved. 
The major inconvenience of alternating line relaxation is its cost; it requires twice 
the computational work of a single line relaxation. 

&I order to overcome these deficiencies, we have develorse the combined relaxa- 
-Lion method, which explores the local information available. The idea is to choose 
Ihe relaxation in a determined region according to the Iocai behavior of the discrete 
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0 27r 
e- 

FIG. 3. Pattern of the combined relaxation for cases with q1 < 1. 

operator. In order to do this, we need to split the domain into disjoint regions such 
that the anisotropy has a fixed direction inside each. In other words, we want to 
apply each line relaxation only in the region in which it smooths very well. The 
choice of the appropriate splitting to use is made with the aid of local mode 
analysis. According to (2.3), (2.5), and (2.6) B-line relaxation does an excellent job 
(with 42) ~0.3) in regions where qr 3 sin c#, while &line relaxation is the most 
effective where q, <sin 4. We then split the domain into regions according to 
whether qr z sin 4 or otherwise. The pattern of the combined relaxation is 
illustrated in Fig. 3. 

The practical implementation of combined relaxation is done as follows. First we 
perform B-line relaxation zebrawise (odd lines first, then even lines) on the regions 
around the poles (where qr > sin 4). Then we apply d-zebra line relaxation near the 
equator (where qr -C sin 4). We note taht the tridiagonal systems now involved in 
the relaxation for the &direction are smaller than the original ones, due to the 

TABLE V 

V( 1, 1) Multigrid Convergence Factors with the Combined and with 
the Alternating Line Relaxation 

‘I, = 0.5 q, = 0.25 

No> N, 

Relaxation 

Altern. Combin. Nf,, Nb 

Relaxation 

Altern. Combin. 

16,16 0.031 0.044 8, 16 0.026 0.026 
32,32 0.031 0.054 16,32 0.03 1 0.059 
64,64 0.040 0.060 32,64 0.042 0.073 

128, 128 0.047 0.064 64, 128 0.05 1 0.082 
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TABLE VI 

$‘( I, I ) Multigrid Convergence Factors per CWU with the Combined and with 
the Alternating Line Relaxation 

Relaxation 

Altern. Combin. N,, N, 

Relaxation 

kltern. Csmbin. 

16, 16 0.084 0.044 8, 16 0.098 0.026 
32,32 0.115 0.054 16, 32 0.108 0.059 
64.64 0.142 0.060 32.64 G.151 0.073 

128. 128 0.169 0.064 64, 128 0.176 0.082 

restriction of the domain. The cyclic tridiagonal systems from the @relaxation keep 
the same size, but are now less in number. The computational cost of a whole 
sweep of combined relaxation is then about the same as a single line relaxation. 

The performance of the new relaxation can be observed in Tables V and VI. In 
order to compare combined relaxation with alternating line relaxation we need to 
take the computational work into account. This is done by choosing any measure 
of work (which we call here comparative work unit-CWU-and for convenience 
define as being the CPU time required by a multigrid cycle employing combiared 
relaxation) and calculating the convergence factors per unit measure of work 
(P l’cwu, where p is the actual multigrid convergence factor per cycle). The con- 
vergence factors with combined relaxation coincide with the convergence factors per 
CWU, due to the choice of the CWUs. The results of the comparison show the 
superiority of combined relaxation (see Table VI )~ 

Remark. In [2] we had already successfully used a combination of line relaxa- 
tions, chosen according to local anisotropy directions. However, in that work ihere 
was an overlapping region of both line relaxations. With combined relaxation we 
go one step further, eliminating the overlap and achieving the same com~~tat.~o~al 
costs of single line relaxations. Similar ideas were also present in works from 
[6]. IIe suggested, however, the use of an arbitrary partition of the domain into 
small subdomains. It should be determined during the program runs (in an empiri- 
cal way, not based on Fourier analysis) if a relaxation on a given region should be 
suppressed or not (see “partial relaxation sweeps” in 16 

2.2. Further Numerical Experiments and Comparisons 

Here we present some results using the multigrid solver in the full multigrid 
(FMG) mode (e.g., [7, 13]), in order to solve a Poisson equation with enforced 
exact solution sin3 4 sin’ 8 (up to an arbitrary constant). Bicubic interpolation is 
used inside the FMG procedure to transfer solutions on coarser grids to the 
finer grids. The FMG procedure solves the equations to within truncation error. 
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TABLE VII 

Comparative Results between the Multigrid Solver and FISHPAK 
for Grids with Mesh Size Relation q1 = 1.0 

Full multigrid FISHPAK 

Error CPU time Error CPU time 

32, 16 7X3-03 10 8.00-03 10 
64, 32 2.04-03 33 2.00-03 33 

128,64 5.12-04 119 4.99-04 136 
256, 128 1.28-04 453 1.25-04 590 

Note. Errors in the uniform norm and CPU times (in 
milliseconds) necessary for solving the equation are presented. 

For the sake of comparison we also show results (including CPU times) obtained 
with the direct fast solver from FISHPAK [l], which is based on reduction 
methods. We can conclude that the multigrid solver is competitive with the direct 
fast solver, even in cases with varying anisotropy directions (ql = 0.5). For very 
line grids the multigrid solver compares even better, since it has a superior time 
complexity to that of the direct solver from FISHPAK (O(N,N,) against 
O(N,N@ log No)) (see Tables VII and VIII). 

We point out that the multigrid solver presented here has a more general use 
than just for the Poisson equation. Its adaption to more general Helmholtz and 
Helmholtz-type equations is straightforward, with little change to the components 
of the solver. We use it here, for example, to solve the Helmholtz equations related 
to (4, 8)-plane relaxations, which are used for the 3D Poisson equation (see 
Section 3). A multigrid method using staggered grids in the solution of similar 
equations appearing in meteorological models was described in [4]. Another 
application in meteorology is presented in [S]. 

T,4BLE VIII 

Comparative Results between the Multigrid Solver and FISHPAK 
for Grids with Mesh Size Relation q, =0.5 

Full multigrid FISHPAK 

Nu> N4 Error CPU time Error CPU time 

16, 16 2.19-02 10 2.02-02 3 
32,32 5.36-03 23 5.27-03 13 
64,64 1.33-03 70 1.33-03 63 

128, 128 3.33-04 243 3.33-04 263 

Note. Errors in the uniform norm and CPU times (in 
milliseconds j necessary for solving the equation are presented. 
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3. THE THREE-DIMENSIONAL POISSON EQUATION ON THE SPHERE 

We consider now the three-dimensional Poisson equation with Neumann 
boundary conditions on the unit sphere. The equation is discretized as described 
in Section 1 according to (1.8)-(1.12) and (1.14). We again enforce the right-hand 
side to fulfil the compatibility condition according to remark (e) of Section 1. We 
start by developing multigrid methods in connection with the standard coarsening 
strategy. These methods will also be of importance when examining the alternative 
semi-coarsening in Section 3.7. 

3. I. Mldtigrid Components for Standard Coarsening 

Our finest grid is defined by (1.2); the coarser grids (constructed by standard 
coarsening) have the same structure. In order to transfer residuais from finer to 
coarser grids, a (transformed) full-weighting operator is applied. With this trans- 
formed operator the geometry of the sphere is taken into account and the resuiting 
.operator has variable coefficients. It is given 

at non-singular points (r, q5> /3) by the 27-point star, 

ai interior singularities on the polar axis (r, 4. 0) by 

+ S~~~~~)(R(r,di,e)+(R(r+h,.$,5)iR(r-.,.~,@)):’2). ‘-7‘ ,1.&j 
d 

with 6 as in (2.2) and R the residual function on the fine grid: 

at the origin by 

S(h,) 
____ 
4S(2h,) 

R(O, 0, 0) 
3 

+ 
S(2h4)k; 

siny2) (R(h,, 0, 0) + R(&: 71, 0); 
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with S= S(h,) = 0.5 sin(h,/2) + z:k; ’ sin(jh,), with h, from the line grid and R as 
in 3.2; 

at nonsingular points (1, (6, 0) on the 

- 
O--h@ and B+hg 

and at singularities (1, 4, 0) on the boundary by 

& j, (R(l, $9 khe) + R(l - L4, khe)) 

sin(hd’2)(R(1,q5,f9)+R(l-h,,~,8)). 
’ sin(h,) (3.5) 

The interpolation of corrections from coarser to liner grids is performed with the 
aid of trilinear interpolation. 

3.2. The Necessity for Plane Relaxations 

When applying standard coarsening we need a relaxation procedure with good 
smoothing properties in all grid directions. For Poisson-type problems with 
uniform Cartesian grids, the usual point Gauss-Seidel relaxation has the desired 
properties, while two-dimensional anisotropic problems require line relaxations. 
However, none of these techniques provides a good smoothing in our case. The 
anisotropy we have to deal with is caused by the spherical grid. The coefficients of 
the transformed Laplacian differ by orders of magnitude in each coordinate 
direction, especially near the singularities. This makes it necessary to use plane 
relaxation in order to efficiently damp the high frequencies of the error (see [6]). 
A plane relaxation is a block relaxation, where one has to solve simultaneously for 
all unknowns belonging to the same grid plane. Therefore, each sweep of this 
relaxation requires the solution of a series of two-dimensional problems. The 
efficiency in solving these problems is crucial for the feasibility of the plane relaxa- 
tion and consequently of the whole method. It is a natural idea to apply multigrid 
also to the solution of these 2D problems [6]. In [ 151, this idea was systematically 
investigated for anisotropic model operators of the type 

with positive constants a, 6, and c. Ideal combinations of multigrid components for 
different values of a, b, and c are summarized in [ 151. Important for efficiency was 
the realization that only an approximate solution of the 2D problems (through just 
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TABLE IX 

Suitable Combinations from Multigrid Components for 
the Ankotropic Model Problem 

Case Coarsening Relaxation 

Standard Point 
Standard z-line 
Standard : .,‘, : j-plane 

( y, :)-semi Point 
Standard ( T. 2 )-plane 

( y, --i-semi r-line 

one multigrid cycle on each plane) is required for smoothing. We repeat some 
results from [ 15 ] in Table IX. 

When treating the Laplacian in spherical coordinates; we have to deai with 
variable coefficients; to get any insight into our roblem from the results in 
Table IX, we need to freeze the coefficients. Points ar the singularities relate to 
the last row in Table IX, which suggests the necessity of using (4, d)-plane relaxa- 
tion in connection with standard coarsening. The next section provides a more 
careful analysis of this observation. 

3.3. Smoothing Analysis 

As in the two-dimensional case, the relaxations examined here couple Fourier 
harmonics. The effect of a given relaxation on high frequencies is therefore analyzed 
with the aid of an ideal two-grid operator, which employs this relaxation. t23ilS 

about how to perform the analysis are given in [3]. We consider a red-black R-line 
relaxation (where lines are arranged in a red-black order) and plane relaxations in 
different directions. The analysis of the line relaxation (in the direction of the 
stronger couplings, as normally recommended) is included to illustrate why line 
relaxations do not smooth well in this case. Besides that, it will be useful when con- 
sidering semi-coarsening strategies. We obtain (analogously to (2.3)) the following 
local smoothing factors: 

where Gt,* denotes the interior of Gz (singularities and boundary points are not 
considered in the analysis). A, to A, are functions of @= (01, 9?, @,) an 
JJ = (P, 4, 0). They assume the following values in case of 

red-biack tUne relaxation 

h, 

A,(@) = 
cos@,+cosTcos@,+i 

cm (b . h, 
q2rh,sin0,+-7- 

\ 
sinzsin@12 1 

sm f# 2 ? - 

cl2 --$-j(i-CGS@3) 
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AA@) = A,(@,, O,, 0, + n) 

Ax(@) = A,(@,, O2 + IT, 0,) 

Act(@) = A,(@,, O2 + IT, 0, + n) 

(3.7) 

(4, 8)-zebra plane relaxation 

A,(O) = 
Cm 0, i- iq2rh, sin 0, 

cos 4 h, 
cos 0,)-i- sin - sin O2 

sin q5 2 

(r, 8 )-zebra plane relaxation 

A,(O) = 

12 
cosdcosO,+i- 

cm 4 h, . 
2 

sin -sin 0, 
sin fj 2 

(1-cosO,)+y’ 
sm’qb(‘- 

c0S 0,) - iq’rh, sin 0 L 

A2(@) = A,(@,, 02, e3 + n) 

Ad@) = A,(@, + 7c, 02, 0,) 

A,(@) = A,(@, + n, 02, o3 + ix) 

(r, d)-zebra plane relaxation 

A,(O) = 

4; - cos 0, 
sin’ 4 

(I-COSO,)+cos+(l-cosQ,)-il 

AZ(@) = A,(@, + TC, 02, 0,) 

Ax(@) = A,(@,, 0, + TT, 0,) 

(3.9) 

(3.10) 

&(@)=A,(@,, @,+r,03+7c) 

with I= (cos #in 4) sin(hJ2) sin 0, + q2rh, sin 0,. The mesh size relations q and 
q/ are given by 

q = h,lhr and q/ = hmlh,. (3.11) 
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In order to see that the o-line relaxation smooths poorly, it is enough to sub- 
stitute 0 = t ~$2,8,0) in the expression for A, in (3.7), which will approach unity 
for p near the origin, and use (3.6). By taking the same value of 8 and points near 
the origin and making use of (3.6 J, (3.9) and (3.10), one derives ihat neither the 
ir, 6)- nor the (t., $)-plane relaxation smooths well. 

Consider now the (d, f3)-plane relaxation, which according to the simple con- 
siderations from the last section should be suitable for this problem. 
the imaginary parts in the the expressions for A, to A, in (3.8) (which should be 
reasonable, at ieast for grid points that are not very close to the singularities’) and 
calling the new quantities 2, to A,, we obtain that 

varies between 0 and I, and consequently, 

For the other terms we obtain 

and IA4j < IAzI> IA4/ 9 \A,\, At every grid point, where 

$(r’ + /zf/4) d qf/sin’ IJ and q’(r’ + ilf/4) < cos(h,:!2). (3.14; 

we have IAil d 0.5 and iA,/ d 0.5. For example, if q d 1 an q < qLT then we derive 
from (3.6) and our last estimates that v(2) z 0.25 and v(3) -z 0.32, which wou!d Zead 
us to expect V(1, 1) convergence factors of about 0.063. However, the terms we 
have neglected in the analysis play a role nar the singularities. For example, for 
r = h, and 0 = (n/2,0,0) we obtain A, = :i and g’j‘/y(l -‘4,)//2EQ.g7,,~ f&T: 
v = 2. This means that the global smoothing factor of this relaxation is at leasr 0.57 
and that we actually could not expect V(1, I) convergence factors better than 0.3. 
Nevertheless, the simplifications we made in the anaiysis are oniy unreasonable for 
points lying one or two grid lines away from the singularities. Consequently, the 
regions where these poorer smoothing factors are achieved are indeed very small 
and will get increasingly smaller with refinement of the grid. Pn case these Iocal 
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factors really influence the results, there is always the possibility of applying a few 
local smoothing sweeps (at low cost, since they are local), then obtaining 
convergence factors corresponding to the smoothing factors in the main part of the 
domain, as argued by Brandt [7]. However, in our numerical results we do not 
observe any significant influence of these locally worse smoothing factors, and 
consequently, no local sweeps of relaxation are actually required. 

3.4. Practical Implementation of Plane Relaxations; First Numerical E.xamples 

We begin by considering examples where the mesh size relations are q1 = 1 and 
q = 7r/4. In this case the computational grid is almost uniform (all mesh sizes are 
similar) and we can expect a good performance by use of (4, @-plane relaxation. 
Figure 4 gives a representation through contour lines of the local smoothing factors 
of plane relaxations. A numerical evaluation of these factors was performed, 
without making any simplification in coef- the formulas (3.8)-(3.10). Since the 

(R.THETA)-RELAXATION 

SOVTH POLE 

SOUTH POLE 

SOVTH POLE 

FIG. 4. Representation of the smoothing factors (with v=2) of zebra plane relaxation in different 
directions for a 16 x 64 x 128 grid with mesh size ratios q = 7c/4 and q, = 1. 
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ficients of the Laplacian do not depend on the 6’ variable, it is possible to give a 
representation of all local smoothing factors in a two-dimensional picture. The full 
three-dimensional representation would be obtained by rotating the given picture 
around the pole axis. It can be seen that the factors for the (4, @)-relaxation !ie 
between 0.2 and 0.3 almost everywhere, with the exception of a neighbourhood of 
the origin where they become slightly worse, as already discussed in the last section 
The smoothing properties of the other relaxations are very poor. In most of the 
domain they lie above 0.7 (everywhere above 0.4) and approach unity near the 
origin. Before we present numerical results for the current example, we brieny 
describe the implementation of the plane relaxations. We begin with 

e (#, 8)-zebra plane relaxations. Each (4, N)-plane in the corn~uat~o~a~ 
domain (including all grid points for a fixed value of v) corresponds to a sphericai 
surface on the physical domain. The discrete two-dimensional problem that has to 
be solved on each plane is a (discretized) Helmholtz equation, with the Welmholtz 
coeificient determined by the radial coefficients of the 3D Laplacian and conse- 
quently varying from plane to plane. These Helmholtz coefficients are relativiy 
small since the couplings of the 3D-operator in the other directions are strongiy 
dominant (which is actually the reason for needing this plane relaxation). The 
Helmholtz equation on each plane is approximately solved with the aid of the 
multigrid solver developed in Section 2. Actually, as also observed in [lS], jusr a 
rough solution of the equation is needed, a V( 1, O)-cycle or a I’( I, 1 )-cycle of the 
2D multigrid solver will be sufficient. The plane relaxation is performed zebrawise. 
first at odd planes (including the origin and the boundary) and then at even planes. 
The origin is actually a degenerated plane (for r = 0) and solving simultaneo&y for 
al! equations there simply means the solution of Eq. (1.10) for the value ar the 
‘origin. 

e (r., @)-zebra p/sane relaxation. Each (r, $)-plane (4 fixed) corresponds :o a 
conical surface on the physical domain. We again need to soPve a Helmholtz eqna- 
‘Con on each of these planes, with Helmholtz coefficients which depend on 4~ The 
equations are solved by one cycle of a multigrid method, whose components are as 
follows: It employs combined relaxation, with &line relaxation where 4~ < ql,.‘sic 4 
and Aine relaxation elsewhere. The method uses standard coarsening, bihnear 
i~tc~~olat~o~ as a coarse-to-fine operator, and ~UlI-we~gh~i~~ as the fine-to-coarse 
operator. 

For the values 4 = 0 and &, = TI the planes degenerate to a radial line and the 
simultaneous solution for all unknowns leads to a tridiagonal system, sol~+w! b:d 
Gauss elimination. The equation at the origin is relaxed separately and the v&us: 
there is used as a Dirichlet boundary condition for the problems on each plaEe 

6 (r, c+h)-zebra plane relaxation. The planes now correspond to half discs ir: 
the physical domain. The multigrid solver, used in the an rosimate solution of the 
corresponding Helmholtz equations for each plane, is based again on standard 
coarsening, bilinear interpolation, full-weighting, and combined relaxation, whrch 
now employs &line relaxation where qr d 1 and r-line relaxation elsewhere. The 
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TABLE X 

3D V( 1, 1) Convergence Factors on a 16 x 64 x 128 Grid with Different Relaxations 

Point 
Relaxation red-black &line &line 

Conv. factors 0.98 0.98 0.98 
CPU (s/cycle j 1.14 1.45 1.72 

Note. CPU times per multigrid cycle are given in seconds. 

r-line 

0.98 
1.42 

40 
altern. line 

0.95 
3.68 

values at the singular axis are relaxed separately and are used as Dirichlet 
boundary conditions in each plane relaxation. 

We come now to the presentation of numerical results. Tables X and XI contains 
numerically computed asymptotic V( 1, 1) convergence factors based on the use of 
several relaxations. Within each sweep of plane relaxation, one L’( 1,O) or V(1, 1 j 
cycle of the 2D multigrid methods is applied on each plane. All results are for the 
case q = 7~14 and qr = 1, here represented by a 16 x 64 x 128 grid. 

The experiments clearly show that relaxations of the wrong type or in the wrong 
directions produce results that lie far away from those which can be achieved by the 
proper choice of multigrid components. Even alternating line relaxation in all direc- 
tions and plane relaxations in the wrong directions produce very poor results. 
Taking the plane relaxation in the correct direction produces a qualitative improve- 
ment. We can also see that one 2D V( 1, l)-cycle inside the plane relaxation is 
enough for good smoothing effects; in fact, nothing further is to be gained by exact 
solution of the two-dimensional equations. By considering the computational costs, 
one would even prefer to use the 2D V( 1, 0)-cycles, which already give very good 
convergence factors. We remark that the differences in computational costs among 
the various line and plane relaxations are mainly due to the arrangement of the 
computational data on the computer. Some line relaxations require much more 
paging than others. One final remark is that a multigrid cycle with plane relaxation 
is actually cheaper than one that uses alternating line relaxation. 

TABLE XI 

3D I’( 1, 1) Convergence Factors on a 16 x 64 x 128 Grid with 
Zebra Plane Relaxations 

Relaxation 

2D Cycle-type (A Oplane (r, B)-plane (r, dhlane 

Vl, 0) 0.115 (2.56) 0.98 (3.21) 0.95 (2.87) 
Gaul, 1) 0.073 (3.34) 0.98 (3.89) 0.95 (3.63) 
Exact 0.072 (-) - 

Note. CPU times per multigrid cycle (in parenthesis) are given in seconds. 
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FZG. 5. Representation of the smoothing factors (with v = 2 i of zebra plane relaxation in dikent 
directions for a 54 x 64 x 64 grid with mesh size ratios q = I and qi = 9.5. 

3.5. A More Complex E.uampie; Combined Relaxation in 3D 

The grid used in the example of the iast section was in accord with the hypothesis 
we made, q < I, q < qi, when deriving the good smoothing properties for the (4, 6)- 
plane relaxation. Consider now a 64 x 64 x 64 grid, for which q = x and q1 = 3.5. 
Figure 5, which presents the smoothing factors of rhe three plane relaxations in this 
case, shows that the situation is now completely different. We can see that none of 

e considered relaxations provides good smoothing overall, their smoothing 
factors approach unity in some region of the domain. Before analyzing the situation 
closer, we present numerical experiments with the multigrid method in this case. 
Tables XII-XIV show convergence factors under use of several relaxation methods. 

The numerical results confirm the smoothing analysis; none of the plane relaxa- 
tions alone produces good convergence factors. Even the combination cf plane 
relaxations in two directions is not enough, only with the alternating plane relaxa- 
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TABLE XII 

3D b’(l, 1) Convergence Factors on a 64 x 64 x 64 Grid with Different Relaxations 

Relaxation 

Conv. factors 

Point 
Red-black 

0.96 

&line 

0.96 

&line 

0.95 

r-line 

0.95 

r&J 
altern. line 

0.93 

TABLE XIII 

3D V( 1, 1) Convergence Factors on a 64 x 64 x 64 Grid with Zebra Plane Relaxations 

Relaxation 

2D cycle-type (4, @plane (r, Q-plane (r, d j-plane 

l’(l. 0) 0.88 0.95 0.95 
V(l.1) 0.62 0.93 0.94 

TABLE XIV 

3D V( 1, 1) Convergence Factors on a 64 x 64 x 64 Grid with Alternating Zebra Plane Relaxations 

Altern. plane relaxation 

2D cycle-type (4, 4 -(r, 0) (r,@)--(r,d) (ckQ)-V,W(r,d) 

l/(1? 0) 0.52 0.36 0.93 0.034 
V(l,l) 0.47 0.36 0.91 0.039 

tion in all directions are very good convergence factors obtained. This relaxation is, 
however, very expensive, which motivates the search for more efficient alternatives. 
In order to be able to reduce the computational costs (and still obtain good 
convergence), we need to analyze more closely the smoothing factors. 

Proceeding as in Section 3.2 (through neglecting the imaginary terms-of first 
order-in (3.8)-(3.10)) and making some simplifications, we can determine the 
regions where each plane relaxation smooths very well (with ~(2) around 0.3). 
These regions are 

for the (4, @-plane relaxation, where 

qr G qhin fP and qr< 1; (3.15) 

for the (r, @-plane relaxation, where 

q//sin 4 2 1 and qr> 1; (3.16) 

and for the (r, 4)-plane relaxation, where 

q//sin fj < 1 and qr > qr sin ~5. (3.17) 
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These regions are depicted in Fig. 5 (for the 64 x 64 x 64 grid). where we can also 
see that we have used reasonable approximations when deriving (3.15t63.17). 

Ideally, we would now subdivide the domain according to (3.15)-(3.17 )? and 
restrict the application of each plane relaxation to the corresponding domain where 
it smooths well. This is, however, not simple to implement. 

Initially we will propose a first step in this direction by using a very simple 
modification of the alternating plane relaxation, which nevertheless reduces the 
computational work and still provides very good convergence factors. (This is a 
direct extension to three dimensions of a technique we have used in [23. cf. the 
remark at the end of Section 2.1.) The idea is to restrict the application of eaci; 0:” 
the plane relaxations to planes where they give a good smoothing, at least in part 
of it, according to (3.15)-(3.17). We will clarify this idea for the present example 
(with 4 = rc and ql= 0.5). A sweep of the modified alternating plane relaxation. 
(MI%) will comprise: 

0 (4, @)-plane relaxation only for planes with I 6 l/n; 
* (r3 9)-plane relaxation only for planes with sin 4 < 4; 
e (r: 4 j-plane relaxation everywhere. 

With this modification we reduce the total computational work (in the example 
we are considering) by about 35 % and obtain V(1, 1) convergence factors of 0.081. 
These are still very good, although worse than those obtained with the full alter- 
nating plane relaxation. Actually, there is no need for extremely fast convergence 
factors, since values around 0.1 are all that is needed for solving the equations with 
FMC (with only one cycle at each level) to the level of truncation errors. 
that, if we consider the computational work, we see that the MPR relaxation has 
a better performance than the alternating plane relaxation (see Tables XV and 
XVI). 

However, we have still not achieved a full extension of the combined relaxation 
since the relaxations still have a high overlap. For example, the (r, d)-plane relaxa.. 
tion was applied in the whole sphere, although it is needed only in region (3.17). 
Its application to all planes cannot, however, be avoided, since this relaxation is 

TABLE XV 

3D I’( 1. 1) Convergence Factors on a 64 x 64 x 64 Grid with Aiternating 
Z-bra Plane Relaxation. with Modified Alternating Plane Relaxation 

(MPR) and with Combined Relaxation (COR) 

7D cycle Relaxation Altern. plane MPR COR 

V(1.0, Conv. factors 0.034 0.08 1 3.083 
CPU (s/cycle) 15.22 9.77 6.99 

V(1, i) Conv. factors 0.039 0.081 O.G90 
CPU (sjcycle) 19.84 13.10 8.75 

?qo’ote. CPU-times per cyc!e are given in seconds. 
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TABLE XVI 

3D r’(l, 1) Convergence Factors per Comparative Work Unit 
(CWU) on a 64 x 64 x 64 Grid with Alternating Zebra Plane 
Relaxation, with Modified Alternating Plane Relaxation 

(MPR), and with combined relaxation (COR) 

Relaxation Altern. plane MPR COR 

2D v(l, 0) 0.212 0.166 0.083 
2D V(1, 1) 0.240 0.188 0.090 

responsible for the smoothing in a part of each plane. What we need to do is to 
restrict the size of each plane. In this way, we will save work not by treating fewer 
planes, but smaller planes (with fewer unknowns). 

The problems related to restricting the size of these planes are that the restriction 
given by (3.17) is not logically rectangular (a rectangle in the computational 
domain) and that the number of grid points in each direction after the restriction 
may not be adequate for coarsening (which normally requires numbers related to 
powers of two). The solution we propose is to aproximate the restricted region one 
would like to use by a logically rectangular region such that it contains the 
restricted region and it is suitable for coarsening. 

Before giving a general description of this technique, let us illustrate it for the 
(Y, d)-plane relaxation in the present example. According to (3.17) we would ideally 
restrict the relaxation on each plane to the region where sin CJ~ B i and r k (271 sin 4). 
The smallest rectangle containing this region is R = ((4, 0) E [7r/6, 5x/6] x 
[l/271, l]}. We substitute for R the rectangle i?= ((0, 0)~ [7r/8, 7x/8] x [g, l]}, 
which contains R and is more suitable for coarsening. Notice that the grid point 
locations are already fixed by the three-dimensional grid and the choice of the 
rectangle is adapted to the grid locations. When solving the two-dimensional 
problems on the restricted regions R, the values at the computational boundary 
(except at points which lie on the physical boundary) are taken as Dirichlet 
boundary conditions. 

We describe now the extension of the combined relaxation to a general case. It 
comprises the following steps: 

l (4, 0)-plane relaxation only for planes with r d l/q. 

l (r, ti)-plane relaxation only for planes with sin 4 < qr (only if region (3.16) 
is nonempty). On each plane it is restricted to R= {(Y, d) E [a, l] x [0,27c]}, with 
a = b/8, b the largest integer such that ad l/q. 

l (Y’, 4)-plane relaxation in all planes (only if region (3.17) is nonempty). On 
each plane it is restricted to R= {(r, 4) E [c, l] x [en, (1 -e)~] $, with c= d/8, 
c < q//q, e =f/16, e < arc sin qr, and the integers d and f taken as large as possible. 

These new modifications bring an extra saving of about 30% in the computa- 
tional costs in relation to the modified plane relaxation and essentially do not 
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TABLE XVII 

3D l’( 1, 1) Convergence Factors with Combined (Plane) Rclaxatior (Using One 
2D r;ll, 0)-Cycle on Each Plane j 

4 41 + 0.25 0.5 1.0 -. ‘0 

x,:8 Grid 

Grid 

n;4 Grid 

Grid 

~‘2 Gria 

Grid 

n Grid 

Grid 

16x128~64 16x128x:28 
0.068 0.059 

8x64~32 8x64~64 
0.064 0.056 

32x128~64 16x64~64 
0.059 0.072 

:6x&x32 8X32X32 
0.046 0.069 

32x64~32 32 x 64 x 64 
0.087 0.097 

16~32x16 16~32x32 
0.072 0.087 

64.32~32 64~64x63 
0.075 0.083 

32X32X16 32x32x32 
0.058 0.065 

8x64~128 
0.068 

4 x 32 x 54 
0.06 1 

!6x64xX28 
0.115 

8x32.64 
0.100 

32x64~ 128 
O.i4l 

16X33X64 
0.123 

32X32X64 
C.087 

16~16x32 
0.078 

8X64%256 

0.046 
lx32x128 

0.043 
16x64x256 

6.059 
8x32~118 

O.G% 
16X32X128 

O.r165 
8 x 16x 64 

0.06 1 
32~32x128 

3.063 
:6x:6x64 

0.045 

change the convergence factors. Table XV gives convergence factors (p, and CPU 
times with the use of these relaxations. To enable direct comparison between. the 
three relaxation strategies, we define CPU times for the multigrid method with 
combined relaxation as a “comparative work unit” (CWU) and calculate the con- 
vergence factors per CWU (~l:‘~~), given in Table XVI. 

Combined relaxation has made possible a saving of about 55% in computing 
time in comparison to the alternating plane relaxation, while still furnishing very 
good convergence factors. The amount of economy it brings depends, of course, on 
the particular grid being considered (for grids requiring plane relaxation in only 
one direction, it actually coincides with this relaxation). Nevertheless, it has proved 
to be very efficient in several different situations. A collection of representatixie 
results is presented in the next section. 

3.6. Further Numerical Examples; Fuil Multigrid R~mIrs 

Table XVII contains a set of numerical experiments on severai grid types. 
The given V(Z, 1) convergence factors were obtained with combined relaxation, 
where just one 2D V( 1,O) cycle was employed on each plane. For each grid type 
(given by the mesh size relations q and qrj, two grids are considered. The tgpisa! 
h-independence for multigrid methods can be observed. More experiments, 
including tests with Dirichlet boundary conditions and solution of the equation OE 
a spherical gap, can be found in [3]. 

Table XVIII contains results related to the solution of the Poisson equation wth 
Neumann boundary conditions and an enforced solution equal tc sin .Y sin :I sin 5:. 
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TABLE XVIII 

Full Multigrid Results for an Exact Solution sin .y sin J’ sin 5; 

Grid 

Exact error 

II Ilm II II2 

FMG error 

II II= II II2 

Error reduction 

CPU (s) II lIx II II: 

2.18-02 3.88-03 2.17-02 3.79-03 
5.44-03 8.95-04 5.07-03 8.49-04 
1.37-03 2.17-04 1.22-03 1.97-04 

2.11-02 3.94-03 2.07-02 3.86-03 
5.12-03 8.66-04 5.22-03 8.93-04 
1.29-03 2.05-04 1.41-03 2.23-04 

2.58-02 6.85-03 2.58-02 6.86-03 
7.06-03 1.39-03 6.69-03 1.30-03 
1.81-03 3.08-04 1.72-03 2.95-04 

5.53-02 1.44-02 5.53-02 1.44-02 
1.92-02 3.32-03 1.94-02 3.21-03 
4.63-03 7.64-04 4.61-03 7.66-04 

2.32-02 4.34-03 2.25-02 4.15-03 
5.77-03 9.59-04 5.44-03 9.33-04 
1.44-03 2.27-04 1.31-03 2.16-04 

0.39 - - 
1.52 4.01 4.34 
8.84 3.97 4.12 

0.31 - 
1.21 4.12 4.55 
7.04 3.97 4.22 

0.16 - 
0.57 3.65 4.93 
3.30 3.90 4.51 

0.21 - 
0.69 2.88 4.34 
3.73 4.15 4.35 

0.28 - 
0.96 4.02 4.53 
4.95 4.01 4.22 

We used a full multigrid procedure with just one 3D V( 1, 1 )-cycle on each grid level 
for the solution of the equation to within truncation errors. Tricubic interpolation 
is used in FMG to transfer solutions from coarser to finer levels. Combined relaxa- 
tion (with 2D V( 1, 0)-cycles) is employed in all tests. The results comprise five dif- 
ferent grid types, with three grids in each class. The exact discretization errors and 
the FMG errors (errors in relation to the exact solution after performing the FMG 
algorithm) are calculated in the uniform and in Lz norm. Error reduction factors 
(for refinements of the grids within each grid class) are given; they confirm the 
second order of the discretization. CPU times (in seconds) expended in the solution 
of the equations are also included. 

From the computational costs we can derive some conclusions on the efficiency 
of the three-dimensional multigrid solver. The solution of the two-dimensional 
Poisson equation (in Section 2) on a 256 x 128 grid required 0.453 s, while here we 
need 3.3 s for a solution on a (four times larger) 16 x 64 x 128 grid. Using the linear 
complexity of multigrid solvers, we can estimate that our 2D multigrid solver would 
require 1.8 s for a solution on a grid of comparable size. This means that the three- 
dimensional solver (which employs plane relaxations, with line relaxations within 
them) is less than two times more expensive than the 2D solvers (which in turn are 
competitive with fast direct solvers). To make a fairer comparison, however, we 
should take into account that in three dimensions we deal with 7-point stars, in two 
dimensions only with j-point stars. We should actually use a multiplicative factor 
of 7/5 in the estimations for the computing times for the 2D solver, which then lead 
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to an estimate of 2.5 s to solve the equations. The extra costs required by the 3D 
solver now amount to only about a 30% increase. This is valid for examples which 
require plane relaxation in only one direction. Consider now the 64 x 64 x 64 grid, 
with twice the number of grid points and a much more complicated anisotropy 
pattern. The estimations of computing time for the two-dimensional solver lead 
now to 5 s, while we actually need 8.84 s with the 3D solver, representing 75 % 
more work. This corresponds roughly to the extra cost of using alternating line 
relaxations instead of a single line relaxation in two-dimensional problems. The 
conclusion is that, even in this rather involved case, the three-dimensional solver 

(with combined relaxation) ,achieves an efficiency comparable to that of two- 
dimensional multigrid solvers employing alternating iine relaxations. 

3.7. Semi-caarsenii~g Strategies 

For problems requiring plane relaxation in connection with standard coarsemng, 
semi-coarsening strategies offer an interesting alternative (e.g.Y [7] ), an alternative 
which may be simpler and even more efficient. The idea behind semi-coarsening is 
simple: if a given relaxation does not smooth well in a certain direction, coarsening 
in this direction should be avoided. In this way, it becomes unnecessary to smooth 
the error in this particular direction and the given relaxation is made suitable for 
providing an effective multigrid method. This idea is especially attractive because it 
may, in principle, make plane relaxation unnecessary. 

However, when the anisotropy changes its direction inside the domain the 
application of semi-coarsening as a substitute for plane relaxation is nontrivial. In 
this case, different coarsening directions should be employed in different parts of the 
domain (according to local anisotropies), leading to complicated grid structmes. 
Th.e resulting schemes would resemble algebraic multigrid schemes (e.g. [E] ). 8ne 
can, instead, employ semi-coarsening as a complement to plane relaxation [S, 91. 
The idea then is to coarsen the grid only in one direction and apply plane relaxa- 
tion on the perpendicular directions, with the goal of obtaining a robust and 
efhcient method (cf. [9]). We feel, however, that neither of these approaches would 
improve the results obtained with combined relaxation. 

In fact, we have compared our multigrid method with the algebraic muitigrid 
solver AMGOl (a solver for symmetric positive definite problems, see [12]), and 
our solver proved to be faster. For example, a V( I, 1 )-cycle of our scheme on a 
16 x 16 x 16 grid (which leads to a complex anisotropy pattern) takes 0.32 CPU 

has a convergence factor of 0.066. The same numbers for AMGO 
are: 0.39 CPU seconds (precomputational costs not included) an 
factor of 0.18. Similar results were obtained for other mesh size ratios (see [3j :I. 
Concerning the method proposed in [9] we can obtain rough estima%s ‘by 
considering operation counts. We compare the number (say k) of multiplications~ 
divisions per grid point performed in one FMG-algorithm (with one V(1, 1 )-cycle 
on each grid level) for both methods. For grids with varying anisotropy direction 
(with 9 = rr, LJ! = 0.5) we have iz z 80 for our scheme. This value of k reduces to 62 
for constant anisotropy direction. The number k given in [9] is 366 (setup cmi.s 
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excluded). We should, however, point out that the algorithm in [9] employs 
Galerkin operators, which could be avoided for the problems considered here. A 
more conclusive statement would require further investigation. 

In the following, we restrict ourselves to cases with constant anisotropy direction 
and investigate how semi-coarsening could improve our results. As an example, we 
take grids with q = 7c/4 and q1 = 1 (as in Section 3.2). In this case, we have seen that 
using standard coarsening requires plane relaxation in just one direction; we are 
essentially dealing with the last model case from Table IX. From the model problem 
analysis we would derive that Q-line relaxation together with (4, 8)-semi-coarsening 
(mesh sizes are doubled in the 0 and 4 directions, but kept constant in the radial 
direction) is an appropriate combination. A local mode analysis brings further 
insight. For the mentioned relaxation and semi-coarsening we obtain 

with PE G,T,’ and A, to A, given by (3.7). The difference between (3.6) and (3.18) 
is due to the different coarsening strategies applied (see [3]). 

We can now derive (making use of some simplifications) that e-zebra line relaxa- 
tion smooths well (when using (4, 8)-semi-coarsening) in cases where 

413 1 and 4 G 419 (3.19) 

for which V(1, 1) convergence factors around 0.1 could be expected. Figure 6 shows 
the smoothing factors (with v = 2) for a 16 x 64 x 128 grid with mesh sizes satisfying 
(3.19). These factors lie overall around 0.3. In Table XIX we present numerical 
results for a multigrid method employing the analyzed combination of line relaxa- 
tion and semi-coarsening on grids with the same mesh size relations (qr = 1, 
q = x/4). V(1, 1) convergence factors (together with the number of grid levels 
employed within the multigrid method) are given. 

The results are quite disappointing. While for relatively coarse grids (with just 
two or three grid levels within the multigrid cycle) there is still a correspondence 
between predictions and results; we can observe a rapid deterioration of the 
convergence factors when the grids are refined (and/or more grid levels are used). 

TABLE XIX 

3D I’( 1, 1) Convergence Factors with Semi-Coarsening (4, = 1, 
q=lr/3) 

Grid Grid levels Convergence factors 

4x16~32 2 0.079 
8x32~64 3 0.15 

16x64~128 4 0.35 
16x64~128 5 0.60 
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FIG. 0. Representation of the smoothing factors (with 18 = 2) of B-iine :e!axation in ~~~~ectior; \vith 
(4. @)-semi- coarsening in severa! grids (with different mesh size rctios !. 

A kind of h-dependence is present here and the results seem to contradict the 
smoothing analysis. 

This is, however, not the case. A closer consideration of the smoothing analysis 
actually explains what occurs here. Figure 6 shows, in addition to the smoothing 
Bctors for the 16 x 64 x 128 grid treated in the numerical experiments, t 
for a 16 x 32 x 64 grid (worse) and for a 16 x 16 x 32 grid (considerably worsei. Ht 
happens that these two other grids are the first two coarser grids for the first one 
under application of (4, 8)-semi-coarsening. The behavior of the anisotropy changes 
completely when passing to the coarser grids; in particular, it new changes i.ts 
direction inside the domain, which does not happen on the finest grid. The semi- 
coarsening produces a modification on the meshsize relation q from x:4 tc ;2:‘2 
and then to rr (4, remains 1). The combination of Mine relaxation and (4, 8 )-semr- 
coarsening ceases to be adequate on coarser grids. 
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Semi-coarsening also has the potential to change the anistropy for the model case 

UZI,, + bu,, + cu,:, with a -+ b < c, 

for which z-line relaxation together with (~1, z)-semi-coarsening is recommended. 
Each step of the coarsening process causes a relative growth of a by a factor 4, 
while keeping b and c unchanged. If the number of levels on the multigrid process 
is large enough, the point will be reached where a z b < c and for even coarser grids 
the anisotropy will be qualitatively different from that on the finest grid. There is 
however a simple way of treating this problem. If we switch to standard coarsening 
(keeping the same relaxation) when we reach the grid where a 8 b 4 c, we will 
achieve an effective method (since the z-line relaxation will smooth well in all direc- 
tions on this grid and on all coarser ones, where the problem will keep the same 
features, due to the change to standard coarsening). This combination of line 
relaxation with semi-coarsening on liner grids and with standard coarsening on 
coarser grids will not only solve the problem, but it will lead also to a method 
which is more efficient than one employing standard coarsening and plane 
relaxation. 

The problem we are dealing with is, however, more complicated. When we reach 
the point (coarser grid) where we should change strategy (actually very soon), we 
cannot switch to standard coarsening and keep using line relaxation. Already on 
the first coarse grid, much more accentuated on the second one, the anisotropy has 
a change of direction inside the domain. The problem to solve on the coarser grid 
is actually of a more complicated nature (in contrast to the model case) than the 
problem on the finest grid, since it requires semi-coarsening in more than one direc- 
tion or, alternatively, plane relaxation in more than one direction. In order to 
achieve any gain by using semi-coarsening on the first one or two grids (and saving 
the plane relaxation there), we have to handle these (more complicated) coarse grid 
problems efficiently, since they actually occur on relatively fine grids. 

TABLE XX 

3D V( 1, 1) Convergence Factors with the Combination of Semi- (on 
Finer Levels) and Standard (on Coarser Levels) Coarsening 

(I LSC 91 + 1.0 2.0 

Grid 16x64~128 16x64~256 

nl4 0 0.115 (2.56) 0.05Y (4.90) 
1 0.114 (2.02) 0.068 (3.80) 
2 0.179 (1.70) 0.109 (3.26) 
3 0.35 (1.61) 0.33 (3.11) 
4 0.60 (1.60) 0.59 (3.09) 

Note. LSC gives the number of finer grids on which semi-coarsening 
is applied. CPU times per cycle (in parenthesis) are given in seconds. 
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Fortunately, the multigrid solvers with standard coarsening and the combined 
relaxation (instead of alternating plane relaxations which would be normally 
required) give an efficient solution to these coarse grid problems. It is then possible. 
with a mixed strategy which combines line relaxation and semi-coarsening on the 
first (one or two) finer grids with standard coarsening and combined relaxation on 
the remaining coarser grids, to get an improvement in efficiency. This method is 
about 20 to 30% faster than the multigrid solver with just standard coarsening and 
plane relaxation and has similar convergence factors. Employing semi-coarsening 
on even more grid levels causes a deterioration of the convergence factors and is 
not recommended, as can be seen in Table XX. Numerical results with the use of 
semi-coarsening on the first one to four grid levels (on the coarser levels we then 
switch to standard coarsening and combined relaxation) are presented. 
just standard coarsening (semi-coarsening on the first 0 levels) are given for 
comparison. 

We have seen that semi-coarsening is an interesting option to improve efhciency,. 
at least for problems with constant anisotropy directions. However. it does not in 
general eliminate the need for plane relaxations. 

4. CONCLUSIONS 

This work describes the development of multigrid methods for Poisson- and 
Welmhoitz-type equations on the sphere. The two-dimensional multigrid solvers 
(for equations on the surface of a sphere) achieve the efficiency of speciaiised fast 
direct solvers. Moreover, they present the advantages of better complexity (work 
proportional to the number of unknowns) and broader applicability (e.g., [S] 1, The 
efficiency of this multigrid solver is maintained, even in the presence of varying 
anisotropy direction. This is possible through the introduction of the new ccjmbine$ 
reiusario~ method, which replaces the twice more expensive alternating hoe 
relaxation. 

The strong and varying anisotropy of the equations on the sphere pose difficulties 
for the realization of efficient three-dimensional multigrid schemes. The use of plane 
relaxations, implemented with aid of two-dimensional multigrid solvers, is required 
for achieving an effective method. More complicated anisotropy patterns, which are 
present for some grid choices, would even require alternating plane reiaxataons. A 
detailed local Fourier analysis provides the guide lines to the extension of combined 
relaxation to three dimensions; with this technique (instead of alternating plane 
relaxations) the results are highly improved. The ?D solvers achieve an efficiency 
comparable to that of two-dimensional multigrid schemes (for the solution of 
problems of comparable difficulty). 

The use of semi-coarsening strategies for three-dimensional problems with 
varying anisotropies is also analyzed. The combination of it with the previ~ously 
developed techniques can make the solver even faster. 
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The fast convergence of the multigrid methods (V( 1, 1) convergence factors 
around 0.1 in all cases) is used to obtain a very efficient full multigrid procedure. 
With just one 1’(1, 1) multigrid cycle on each grid level (within the FMG) the 
equations are solved to below the level of the truncation errors. 
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